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ABSTRACT

In this dissertation s simple_ efficient attitude-control-system

is developed for a satellite in an elliptic orbit. Linear time-varying

equations, which include the gravity-gradient torque, are used to

describe the attitude motion. These equations are obtained by assuming

that the attitude angles, attitude angular-rates, and orbital eccentric-

ity are small. The desired attitude is such that one body-fixed axis is

earth-pointing and another is normal to the orbital plane.

The control torques are assumedto be supplied by gas jets, and the

performance of the control system is judged by a minimumfuel-consumption

criterion. Pontryagin's MaximumPrinciple is employed to obtain necessary

conditions on the optimal control. By using the conditions specified by

the MaximumPrinciple, the system is run in reverse-time. Thus, the

appearance of the optimal trajectories in the phase planes for various

initial conditions is obtained. From this information a form for the

suboptimal control system is chosen, and the system parameters are then

optimized. The final system is quite simple, yet its performance is near

optimal for limited but realistic ranges of eccentricity and moment-of-

inertia values. This development is accomplished by using analog-computer

simulations.

To further check the performance of the developed control system,

it is used to control the motion described by the full nonlinear attitude

equations. These equations are integrated by using a digital computer.

For small errors the results check those that are obtained by using the
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linear equations. In addition, the system is found to perform quite

well when the attitude errors are large.

For a satellite in an elliptic orbit and attitude equations written

with respect to an earth-pointing reference frame, the pitch equation

contains a time-dependent forcing term. Thus, continual steady-state

^--_-^_ -'_ '_der _÷ _+_
o a t., .LO.L a,_.., v v... j ,._ v___. _... _ _.,L_, )

is obtained by adding a small pitch-reaction-wheel for the steady-state

phase of the control. The steady-state fuel consumption is then very

small, as is the power required by the wheel.
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I. INTRODUCTION

A. Mission Requirements and Disturbances

The satellite considered in this report is assumed to be on a

mission that requires it to be _rth-po_nt_g_ i.e._ a particular side

of the satellite must face the earth. While most frequently such

satellites are in circular orbits, they may also be required to be in,

or may accidentally be put into, elliptic orbits of small eccentricity.

Other similar missions could conceivably require the satellite to be

earth-pointing for short periods of time for data transmission purposes.

In either case, the acquisition phase of the problem is the same; only

the steady-state portion differs.

Also, the mission is assumed to have a fairly long life-time, i.e.,

up to one year. Thus, besides being able to place the satellite in the

proper attitude and hold it there, the control system must do this

efficiently. Otherwise the required fuel load may be prohibitively large.

In orbit the satellite encounters many disturbances which cause it

to deviate from its desired attitude. Thus, besides the original

ejection error, the control system must correct for errors induced by

the gravity gradient, aerodynamic drag, solar radiation pressure, earth's

magnetic field, and collisions with micrometeors. Solar pressure and

magnetic effects are small and, consequently, cause slow increases in

the attitude errors. The size of the torque due to the aerodynamic drag

depends on the altitude of the orbit and the shape and attitude of the

- i -



satellite. In most realistic cases it is less than the gravity gradient

torque. In an elliptic orbit of eccentricity around 0.i or larger, the

drag force behaves like a pulse at the perigee of the orbit. Collisions

with micrometeors, also pulse disturbances, are not too common.

In deriving the equations of the attitude motion that are used in

this report, the gravity-gradient torque is included. The other torques

that are mentioned above are assumedto be disturbances to the final

motion.

B. Control Methodsand Performance Criteria

There are manymeansthrough which the satellite can be controlled

to reach and keep the desired attitude. In general, these methods are

classed into two groups, passive control and active control. Passive

devices use inherent damping effects, e.g. in beamflexure, and take advantage

of gravity and magnetic torques. As the nameimplies, there is no power

input. Active controls include momentumtransfer and mass expulsion

devices. Someexamplesof momentumtransfer devices are reaction wheels

and spheres, gyroscopes, and fluid flywheels. Mass-expulsion control

methods include cold-gas jets, hot-gas jets, and ion propulsion. Attitude

control by one or more of these methods is discussed by Cannon[9],

Haefner [17]_ and Nichol [18]. Other methods for attitude control include

magnetic control (Wheeler [19]) and spin stabilization (Kane and Barba

[2o]).

In this report cold-gas jets are used for the attitude control of

the satellite. Cold-gas jets were chosen because of their simplicity_

their ability to produce small torques_ and the fact that there are no

coupling effects due to the controller.



Whenconsidering satellite attitude control, the most significant

and most frequently used performance criteria are minimum-time, minimum-

energy, and minimum-fuel-consumption. Since in this report the satellite

is assumedto be on a mission of long lifetime, the time used to correct

attitude errors is not extremely critical. Therefore, the minimum-time

_--____ ...... does _ _jo__. _._._-__.... _'_ _ _o_._ _-energy are so_-_what

related criteria except that the latter weighs the energy of the state

of the system in addition to the control energy. When considering

control effort with a cold-gas jet system the fuel criterion is more

applicable than the energy criterion because of the characteristics of

the jets, i.e., torque is directly proportional to the fuel consumption.

The fuel consumption is important because of the long duration of the

mission. Thus, the minimum-fuel criterion is used in this report to

rate the performance of the control system. The energy of the state is

also considered in the final choice of the system, but it is not included

in the original development.

C. Previous Research and New Results

A considerable amount of work has been done in the last few years

in the area of minimum-fuel control of the attitude of a satellite.

Meditch [i0] assumed large control torques and, consequently, did not

include gravity gradient effects. Craig and Flugge-Lotz [7] and Marbach

[8] assumed small control torques and included the gravity gradient effects,

but limited the study to satellites in circular orbits. Hyver [21] con-

siders the same problem but assumes that measured values of the states

are noisy. All of these reports used linearized attitude equations.

- 3 -



Hales [16] considers the more general problem of an elliptic orbit and

large attitude errors. He uses the nonlinear attitude equations and

solves the problem using a modified steepest-descent method. The end

result_ however, is not a feedback control system.

In this report the control torques are assumedto be small and the

satellite is assumedto be in an orbit of small eccentricity. The linear-

ized equations that describe the small attitude motion are time-varying.

Thus_ the assumption of an elliptic orbit introduces parametric excitations

and forcing terms which are not present when a circular orbit is assumed.

Pontryagin's MaximumPrinciple is applied to these time-varying equations

to determine the characteristics and form of the minimum-fuel optimal

control. Based on this information a suboptimal, feedback, attitude-

control system is developed that is both simple and efficient. Using the

nonlinear attitude equations the suboptimal control system is shownto

work equally well whenthe attitude errors are large. Also, the problem

of steady state control is discussed to someextent. In all cases it is

assumedthat through the use of star trackers, sun sensors, and/or horizon

scanners, the state of the attitude motion is known completely and

accurately.

-4-



II. PRELIMINARY DEVELOPMENTS

This chapter contains the development and discussion of several

topics which are essential to the following chapters but in themselves

are not new. They are included for the sake of clarity and completeness.

A. Equations of Satellite Attitude Motion

The equations of the attitude motion of an earth satellite have

been derived by many persons and in many forms. The following derivation

and resulting equations are essentially the same as those of Kane [2] and

DeBra [i].

i. Reference Frame and Parameters

The satellite is assumed to be on a mission which requires it

to be earth-pointing, i.e., a particular face of the satellite is to be

as nearly as possible normal to the local vertical. The local vertical

is defined as a line passing through the mass centers of the satellite

and the earth. Thus, it is convenient to choose a reference frame which

is fixed with respect to the local vertical. Such a reference frame_

denoted by R _ is defined by the right-handed, mutually-perpendicular

set of axes shown in Figure 2.1. The 1-axis is directed away from the

earth along the local vertical_ and the 5-axis is normal to the orbital

plane such that the dot product of the velocity of the center of mass of

the satellite and the e2 unit vector* is positive. The origin of this

set of axes is assumed to coincide with the mass center of the satellite.

e. is a unit vector directed along the i-axis_ i = 1,2_5
i

-5-
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Figure 2.1 Three-Axes Euler Angles.
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The attitude of the satellite with respect to R is determined

by what may be referred to as "Three-Axes Euler Angles". They are formed

by making the following ordered right-handed rotations (see Figure 2.2):

eI about

e2 about

e3 about

i _ BI' B2' B3 (bl = el)

B2_ Cl_ C2' C3 (c2 = b2 )

C3=_X , Y, Z (n3 = c3)

(2-1)

The XYZ set of axes is fixed in the satellite.

This set of angles uniquely determines the attitude of the

satellite with respect to R except when @2 _ ± 90o " However, this

presents no difficulties since, as will be discussed later, the attitude

angles are assumed to remain small. When el, e2 , and e3 are small

they may be regarded as the yaw, roll 3 and pitch angles_ respectively.

2. Derivation of Attitude Equations

The motion of a rigid body about its center of mass is described

by Euler's Dynamical Equations which are easily derived from the Angular

Momentum Principle. Referred to body fixed coordinate axes, X, Y , and

Z , which are aligned with the principal axes of the body, the Euler

equations have the following form:

Ii& 1 + _2_3(I3-I2 ) = M I

2 +  l 3(ll_iS)= M2 (2-2)

13& 3 + _iw2(12-Ii ) = M3

13 are the principal moments of inertia of the

i = 1,2,3 , with _ the angular velocity of the

where II_ 12 , and

body; _. = _.n. ,
1 1

-7-
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body in an inertial reference frame and ni ' i = 1,2,3 , unit vectors

aligned with X, Y , and Z , respectively; and M. = M.n. with M the
I i

total external moment acting on the body. The dot (') denotes differ-

entiation with respect to time.

In applying Euler's Equations (2-2) to an earth satellite the

following _ss_]mpt_ons are made: the s_te]]_te _s s r_g_d body whose

principal axes are the body fixed axes, X, Y • and Z , and the center

of mass of the earth is fixed in inertial space. The validity of the

first assumption depends on the type of equipment carried by the satellite.

The second assumption is quite reasonable.

The angular velocity of the satellite in an inertial reference

frame is

m

= _e3 + elel + e252 + e3n3 (2-3)

where e is the orbital rate of the satellite (see Figure 2.1). The

unit vectors in Equation (2-3) are shown in Figure 2.2 and are related

to the body fixed unit vectors as follows:

el = c2c3ni - c2s3n2 + s2n3

(SlS3-ClS2C3)nl + (SlC3+ClS2S3)n 2 + ClC2n 3 (2-4)e 3 =

b2 = s3nl + c3n2

where c = cos e and s. = sin ei , i = 1,2,3 .i i m

The components M. of the external torques acting on the
i

satellite• excluding the control torques• are assumed to consist only

-9-



of those due to the gravity gradient. All others, which are either

smaller or behave as pulses, will be considered as disturbances to the

final motion. The gravity-gradient torque is simplified by assuming

that the earth is a homogeneous sphere* and, thus, possesses an inverse-

square-law central-force gravitational field. Thus, referred to the

body fixed axes, the gravity-gradient torque about the center of mass of

the satellite is [3]

S_ -- -- --

M= -_ [a2as(Is-I2)n I + asal(Ii-Is)n 2 + ala2(I2-11)ns]
r

(2-_)

where _ = GM _ with G the universal gravitational constant and M

the mass of the earth; r is the distance between the centers of mass

of the earth and the satellite; and a. = ni'el , i= 1,2,3 .i

Substituting relations (2-3), (2-4), and (2-5) into Euler's

Equations (2-2) and solving for el' e2 ' and e3 ' yields the following

equations for the attitude motion of an earth satellite in an elliptic

orbit :

I

el - c2

- klCS(r5-_ c2s2ss+_2eS)

_ __ [e16)2s2- e2_)S+ e2_)ClC2- E)IE)SlS2- es6)Sl+ eClS2

k2ss(_c2s2cS-_l_3)]
(2-6)

kiSs _ c2s2s5+_2_S

(2-7)

Actually, it is sufficient to assume that the earth is a sphere whose

mass density is a function only of the distance from its mass center.

- i0 -



_3 = _lec2Sz - &l_2C2 - elS2 + _2_s2el - Cole2

where

e I = (_Sl+e2)s 5 - (eClS2-elc2)e 5

½ = (e_±+e_)_3 + (eClS2-ezc2)s3

_3 = COle2 + elS2 + e3

and kl_ k2 , and kS are inertia parameters defined by

13 -12 II -13 12 - I I

kI - ii ' k2 - 12 _ k 3 - 13

(2-8)

(2-9)

(2-1o)

However, the attitude motion is not completely specified, i.e., the above

equations cannot be solved,,_ntil expressions for r and e are obtained.

Since the largest dimension of the satellite is many orders of

magnitude smaller than the distance between the mass centers of the

satellite and the earth, the satellite can be considered as a particle

moving in the central-force gravitation field of the earth• The motion

of the particle is governed by the equations (see _Dldstein [13])

- r_2 = - _/_ (2-11)

r2_ = h (2-z2)

where h is a constant that is proportional to the angular momentum of

the particle about the center of mass of the earth. The solution to

Equations (2-11) and (2-12) is the equation of an ellipse,

- ii -



h2
--= 1 + e cos 8
_r

where e is the eccentricity and

(see Figure 2.3).

3n= t.x

5-
r

e is measured from the perigee

Combining Equations (2-12) and (2-13) and defining

yields the following relations:

n2(l+e cos @)3

(2-13)

= n(l+e cos e) 2

From Equation (2-15) it is apparent that

(2-14)

(2-15)

n represents the average

orbital angular velocity of the satellite, i.e.,

is the orbital period. The orbital angular acceleration

differentiating Equation (2-15):

= - 2n2e sin @(l+e cos e) 5

n = 2_/P , where P

is found by

(2-16)

Substituting Equations (2-14) and (2-15) into Equations (2-6),

(2-7), and (2-8) gives three second-order differential equations which,

together with Equation (2-16)_ completely describe the attitude motion

of an earth satellite in an elliptic orbit.

3. Stability of Attitude Motion

The four second-order equations,(2-6) to (2-8) and (2-16), that

describe the attitude and orbital motion of the satellite are highly non-

linear and s thus, quite difficult to analyze. However_ many investigations

into the stability of these or similar equations have been made, for

example, _Bra [i], Kane [2], and Kane and Bsrba [20]. Their results

- 12 -
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Figure 2.5 Elliptic Orbit_ e = 0.i .
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indicate that not too manysatellite configurations are stable_ partic-

ularly in an elliptic orbit.

The purpose of discussing stability here is to attempt to

justify linearization of the attitude equations. Obviously, the behavior

of an unstable nonlinear system cannot be described by linearized

equations. Since the attitude equations will be linearized in the fol-

lowing, ideally it would be necessary to find a satellite configuration

whosemotion is boundedwithin a region where linearization is likely

to be justifiable, say errors of less than one-half radian.

DeBra [i] gives several stability char_s for various satellite

shapes and various orbital eccentricities. His stability bound of ninety

degrees is too large for purposes here, but inertia properties that

result in stability according to these charts should still be chosen.

Such a configuration is one that has moment-of-inertia ratios of

11/13 = 0.i and 12/I S = 0.95 • According to DeBra's charts, it is

stable for eccentricities up to 0.I . However, these values were modi-

fied slightly since they turned out to be very close to an unstable

region of the instability charts of Kane [2]. Thus, the final nominal

momentof inertia values that were picked to be used in the following

are 11/13 = 0.12 and 12/13 = 0.97 , which result in momentof inertia

parameter values of kI = 0.25 , k2 = - 0.91 , and k3 = 0.85 . This

represents a fairly realistic satellite configuration (see Appendix A).

To further examine the behavior and stability of the attitude

motion of this configuration, the four second-order orbital and attitude

equations were integrated on a Burroughs B5500 digital computer using a

- 14 -



Kutta-Merson finite-difference integrating procedure.* Someof the

results are shown in Figures 2.4 and 2.5, which are phase plane

(normalized angular velocity ei/n versus angular position e.1) plots

of the attitude motion. The length of integration was approximately

three orbits. For quite small eccentricities as in Figure 2.4

( e = 0,O1 ) the motion was well behaved, although the yaw error did

grow to three times its inlzial value For larger ............... _^

roll and pitch motion, while quite different in appearance, still

remained bounded at roughly the magnitude of the initial conditions.

However, the yaw motion was not so well behaved. For e = 0.05

(Figure 2.5) the satellite was just beginning to spin about the yaw

axis, and for e = 0.i this spinning occurred much sooner. For smaller

initial conditions, the behavior was similar only the error growth in

yaw was much slower.

Thus, while this configuration cannot be called stable,

except possibly for very small eccentricities, it is fairly well behaved.

The only large error growth occurred in yaw. However, since the moment

of inertia about this axis is the smallest_ this motion is the easiest

to control. Therefore 3 this satellite configuration will be used in

the following chapters.

4. Linearization of Attitude Equations

It is a formidable task to develop an optimal or near optimal

attitude controller using the full nonlinear equations.** Thus, it is

* The procedure was written by John H. Welsch and was obtained from the

program library (Program No.95) of the Stanford Computation Center. For

a description of the Kutta-Merson method, see Fox [15].

See Hales [16] for one solution to the problem.
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a. Yaw Phase Plane

Figure 2.4 Uncontrolled Attitude Motion_ e = 0.01 .

= 01 02 0 5 =Initial Values: 8° 0 _ = = 0.5 rads.
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b. Roll Phase Plane
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c. Pitch Phase Plane

Figure 2.4 (continued)
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iii:

a. Yaw Phase Plane

Figure 2.5 Uncontrolled Attitude Motion, e = 0.05 .

Initial Values: e° = 0 , eI = e2 = e 3 = 0.3 rads.
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b. Roll Phase Plane

i:_:f ,_t ! i i _,_X,,,,'_.'-__-- _

_._._-4.4! ! % i_

• !z,[:4 :

f:! !!:t: i:!t!!_iTl:i::i
, . ; . I

c. Pitch Phase Plane

Fixate 2.5 (continued)

- 19 -



desirable to linearize the equations and develop a control system that

is optimal or near optimal for small errors. The performance of this

system can then be checked using the full nonlinear equations and large

errors. This is precisely what has been done in the following chapters.

As discussed in the previous section_ the attitude motion for

the chosen configuration was not stable in many cases. Thus_ since

small errors would not always remain small_ the linearized equations

would not always give an accurate description of the motion. However_

if it is assumed that an attitude control system which guarantees

asymptotic stability of the attitude motion is added to the satellite_

the linearized equations can be used with reasonable accuracy for small

errors.

By assuming that all attitude angles e. and normalized
1

attitude angular rates ei/n are so small that products in these terms

can be neglected_ the following linearized attitude equations are

obtained:

el = (1-kl)ee2- kl_2el + _e2 (2 -17 )

3_k 2

e2 = - (l+k2)e_l+ k20202 - e01 + --Y- O2
r

(2-18)

S_k 3

e5 = 3 o3 - _ (2-19)
r
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These equations show the pitch motion to be forced by a periodic function

and to be decoupled from the yaw and roll motions. Integration of the

full nonlinear equations showsthat when all errors and error rates are

initially zero, the forcing function produces pitch motion as shown in

Figure 2.6, and the yaw and roll errors remain zero, i.e., no coupling

is present. However, if the yaw and roll errors are not initially zero,

the forced oscillations in pitch cause them to grow. The pitch motion,

on the other hand, is hardly affected by the growth in the yaw and roll

error. Thus, while the linearized equations do not always accurately

describe the small attitude motion of the satellite, they serve as a

good approximation for the development of the attitude control system.

Onefurther assumption is madein arriving at the form of the

attitude equations used in the following two chapters, that of small

eccentricity. This assumption is quite reasonable since it is highly

unlikely that a mission which requires a large eccentricity would also

require the satellite to be earth pointing, except possibly for short

periods of time for communication purposes. In most of the following,

only orbits of eccentricity around 0.1 or less will be considered.

While 0.1 is not a large eccentricity, to an observer on the earth the

orbit appears quite elliptic. For instance, if the perigee of the

orbit is 200 miles above the earth's surface, then the apogee is llS0

miles above the earth's surface (see Figure 2.3).

Thus, before relations (2-14), (2-15), and (2-16) are s_0-

stituted into the attitude equations, they are expanded in powers of the

eccentricity e For eccentricities of 0.i or less, sufficient

- 21 -



Figure 2.6 Forced Pitch Motion, e = 0.i .
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accuracy is obtained by retaining only first-degree terms.* Therefore_

_----_ n2(l+Se cos e) (2-20)5
r

_ n(l+2e cos 8) (2-21)

_ - 2n2e sin 8 (2-22)

Also; because of the assumption of small eccentricity, e sin 8

e cos 8 are easily written as explicit functions of time. From

Equations (2-12) and (2-15)

h 2dtd8 = -_ dt = n(l+e cos 8)
r

Expanding in powers of

give s

e - e° = nt + 2en sin (8-80)

where 8 = e at t = 0 .
o

When Equation (2-24) is substituted into

e cos 8 , only first-degree terms in e are kept.

simply

e sin e = e sin (nt+8o)

and

and

(2-23)

e , dropping higher-degree terms, and integrating

(2-24)

e sin 8 and

The results are

(2-25)

e cos 8 = e cos (nt+8o) (2-26)

Substituting Equations (2-25) and (2-26) into (2-20) through

(2-22) and in turn substituting these into Equations (2-17) through (2-19),

produces three second-order time-varying equations that completely

This is shown in Chapter V when the full equations are used.
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describe the small attitude motion of an earth satellite in an elliptic

orbit of small eccentricity. These equations can be written in a con-

venient form by introducing the dimensionless parameter T_ where

d
T = nt and ' - , (2-27dT

and the notation

8 = 8_ : i=l,2,S (2-28i x2i-i _ z x2i _

Then; in matrix form the attitude equations are simply

: A(T) + [(T)

where x and g(T) are the vectors

(2 -29)

and

-t .

x : IxI x2 x S x 4 x 5 x6] (2-50)

g(T) t = [0 0 0 0 0 2e sin (T+8o)] (2-31

and A(T)

A(T)=

is the

a21

0

a41

0

0

6× 6 time-varying matrix

i 0 0 0 0

0 a2s a24 0 0

0 0 1 0 0

a42 a45 0 0 0

0 0 0 0 I

0 0 0 a._ 0
ob

(2-52)

* -t
y denotes the transpose of y .
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where

a21 = - k1(l_e co_ (T_o))

a23 = - a41 = - 2e sin (T+@o)

_24 = (1-kj)(l+2e cos (_+eo))

%2 = - (i+k2)(l+2e o@s(_+eo))

a45 = k2(4+lSe cos (T+80))

a65 = - 5ks(l+Se cos (T+eo))

(2 -53)

These final attitude equations_ which will be used t_hroughout

the next two chapters_ contain only the following parameters: 8 ,
o

which depends on the initial orbital position of the satellite; e ,

which depends on the shape of the orbit; and kl, k2 , and k S , which

depend on the inertia properties of the satellite.

B. Pontryagin's Maximum Principle

Pontryagin's Maximum Principle is a useful mathematical tool for

obtaining necessary conditions for optimal controls. In many cases its

application is quite straightforward. However_ what is obtained is the

control as a function of the sdjoint variable. The difficulty is in

converting this control to a function of the state variable_ i.e., a

feedback control.

l°

1)

= _(_,_)

where x is an n-dimensional state vector and

Statement of the Theorem

The optimal control problem consists of the following:

A system of differential equations

is an

(2-34)

r-dimensional
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control vector_ r _ n , which is restricted to an admissible set

(U is often the set of piecewise continuous functions.)

2) Boundary conditions on the state vector,

X(to) = x , xfo x(tf) :

U .

(2-35)

3) A cost functional that measures the performance of the control,

tf

J = _ _(x,u)dt

o

(2-36)

The optimal control is defined as that control in the set U

which produces the desired boundary conditions on the state vector

and minimizes the cost functional J with respect to all other controls

in U that produce the desired boundary conditions.

Pontryagin's Maximum Principle states [5] that for

optimal it is necessary that an n-dimensional vector function

such that the Hamiltonisn, defined as

to be

p exist

H(#,p,_) = _t._(_,_) #(_,_) , (2-37)

is s maximum as a function of u for all t, to S t _ tf .

function p satisfies the differential equations:

The vector

PI: i: l,...,n . (2-38)
i

If the system equation_ corresponding to Equations (2-34), are

nonsutonomous_ i.e., time appears explicitly, they can easily be made

autonomous by introducing s new variable, Xn+ I = t , and adding an addi-

tional equation, Xn+l = fn+l ' where fn+l = i The Maximum Principle

- 26 -



holds for this new

Hn+l = Hn + Pn+l

Thus, as a funct ion of u

maximafor the same u . Therefore, in practice

autonomoussystem is unnecessary.

n+l-dimenslonal system, for which the Hamiltonian is

(2-39)

the Hamiltonians for the two systems attain

the change to an

in using the Maximum Principle it must be reme_oered that the

cenditions specified by it are in general only necessary conditions.

These conditions guarantee neither that the specified control is optimal

(sufficiency), nor that an optimal control exists.

2. Method of Application

Maximizing the Hamiltonian gives the optimal control as an

explicit function of the adjoint variable p . However, to obtain a

feedback control it is necessary to have the control as a function of

the instantaneous state of the system. (Since the attitude equations

are time-varying, it is expected that the control will be a time-varying

function of the state.) Thus, the solving of the optimal control problem

reduces to the solving of 2n-differential equations,(2-34) and (2-38).

However, the 2n-boundary conditions, the initial and final state of

the system, are all on Equation (2-34). The conditions on the solutions

of Equations (2-38) are that they must define a control, u(p) , of the

form dictated by the Maximum Principle that brings the system from its

initial state to the desired end state in the specified amount of time.

The determination of the proper p as a function of x and

t , which would determine the desired feedback control, is not in

general an easy problem. One method of approach is "reverse-tlme"
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integration. The 2n-differential equations are integrated backwards in

time starting at the desired endpoint x(tf) arbitrarily choosing

p(tf) _ and applying control as determined by

u = u(p(t*)) (2-40)

where t* = (tf-to)- t , i.e., "reverse-time". The initial state of the

system, X(to) , (final state in reverse-time) will not be known a priori

as it depends on the final state of the adjoint variable, p(tf) , the

final time, tf , and the time of solution, tf -t o If a sufficient

number of these variables are chosen, the resulting initial states will

constitute a good coverage of the possible initial states. A careful

study of the control behavior and/or the adjoint initial conditions

will produce in some cases the optimal comtrol law and in many cases

a good suboptimal control law. This reverse-time method will be used

in the following two chapters.

C. Optimal Attitude Control of a Satellite

To provide attitude control torques it is assumed that there are

three pairs of oppositely-directed cold-gas jets, each pair possessing a

maximum torque level. The three pairs of jets are aligned such that the

equations of the controlled attitude-motion have the following form:

= A(:):+ +

where

0

i

0

B =
0

0

0

O 0

O 0

O 0

i O

O O

O i

- 28 -
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i. Performance Criterion

As stated in the Introduction, the performance of the control

system will be judged on the amount of fuel consumed. This "minimum-

fuel" performance criterion is described mathematically by the functional

-r
f 5

"ro i=l

(2-42)

The u* that minimizes this functional is the desired control.

2. Optimal Control Law

The Hamiltonian for this system is given by

H = pt'x' - _(x,u*)
5

= _tA_ ÷ _t._ + 5tBu._ _ lu_-I
i=l

= H* + terms not involving u*

(2-43)

Thus, for u* to be optimal it is necessary that H* be a maximum as

a function of u* , where

3

H*= ptBu*- _, lull
i=l

= p2ul + Pu_ + P6_; - lull - lust - lu_l

H* is maximized when u* is the following "coast function" of

u* = N* CST i=1,2,3l l P2i '

f

_* so_ for IP2il> z
= < i P2i

I 0 for lp211< z

- 29 -
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where

SGN y =

and the adJoint vector

_'= - At_

(2-47)

satisfies the equation

(2-48)

The above relations define the desired optimal control as a

discontinuous function of time. The problem that remains is to deter-

mine this control as a function of the instantaneous state of the

system.
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III. PITCHATTITUDECONTROL

The linearized pitch equation is decoupled from the linearized

yaw and roll equations and, therefore, can be considered separately.

The pitch equation is

TT

U_= - 5k5|1\ + 5e cos (T+eo)|X5"l+2e sin ..(T+eO)+X 5

Am

(5-1)

Uncontrolled Linearized Pitch Equation

Equation (5-1) without the control u 5 has the form of Mathieu's

Equation with a small, periodic forcing-function. The stability of the

solutions to such an equation does not guarantee in-the-large stability

of the pitch motion, since Equation (5-1) is a linearized version of the

pitch equation. However, it is still sensible to choose the parameter

k 5 such that the linearized equation is stable.

Since the forcing function is small and periodic, the forced and

unforced motions of the uncontrolled pitch equation are fairly similar_

except in steady state. In the phase plane, although the motions are

at times somewhat far apart, the overall trajectories are basically of

the same shape (see Figure 5.i). Thus, one may hope to obtain a good

idea of the stability of the linearized motion by considering the sta-

bility of the solutions to Mathieu's Equation, which has the form

+ (5+_ cos t)x = 0

The value of the inertia parameter

stability considerations in Chapter II, is 0.85.

the Mathieu Equation parameters are 5= 3k3= 2.55

(3-2)

k5 that was chosen, based on the

For this value of k 5

and c= 9k3e= 7.65e
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Figure 5.1 Pitch Motion, Forced and Unforced
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From the stability chart for Mathieu's Equation [12], the equation is

stable for these parameter values for a larger range of eccentricity

( 0 _ e_ 0.22 ) than is being considered here. Therefore, in the follow-

ing 0.85 will be used as the nominal value for k3

B. Optimal Pitch Control

Even for small £ the phase plane trajectories of the solutions

to Mathieu's Equation maydeviate considerably in shape from the tra-

jectories of the solutions to the simple pendulumequation (£ = 0)*

This is clearly illustrated in Figure 5.2. Thus, the form of the optimal

switching lines for Equation (5-1) maybe quite different from those for

the pendulumequation.

For ease in handling Equation (3-1), a new dimensionless variable

will be defined. Let _ = npt where 82 = 3k3 . Then Equation (5-1),

written as two first crder equations_ becomes

T

x5 x6

' /7 x5 + 2e _ +0o) u5
x_ = - {i+ 5e cos k_ +e 0 _ sin +

(3-5)

 here u3= 2 and ' = d/d¥-

With this change in the time scale, the cost functional for u5

becomes

7
f

?
J5 = J

T
O

(3-2)

The simple pendulum is equivalent to a

phase plane trajectories are circles.

- 55 -
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Fibre 5.2 Pitch Motion, Elliptic and Circular Orbits.
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Thus, as shown in Chapter II, the optimal control with respect to a

minimum-fuel performance criterion must satisfy the relation

u 3 = N3 CST P6 (3-5)

where N3 = N_/_ 2 and P6 satisfies the normalized Mathieu Equation,

+ cos o) P6= o (3-6)

Equations (3-5) and (3-6) show that the form of the optimal control

as a function of time is not affected by the presence of the forcing

function. The only change in the optimal control due to the forcing

funct__on is a slight change in the initial conditions on the adjoint

equation, with a corresponding shift in the switching times, to guarantee

that the origin is reached. Since the forcing function is fairly small

and periodic, these variations will not be large. Therefore, the

forcing function will be neglected in the remainder of this chapter.

Further reasons and justifications are contained in the last section of

the chapter. The forcing function will later be included when three-

axis and steady-state control are considered (Chapter V).

The optimal control is a coast function of a solution to the

normalized Mathieu equation. _rom Figure 3.3,a phase plane plot of a

solution to Equation (3-6)_ it is apparent that the control need not

he of alternate signs separated by dead zones as for the simple pendulum.

The dead zones are always present, but it is possible to have a "skipped"

control-on intercal, i.e., the control-on intervals on each side of a

control-off interval are of the same sign. However, this occurs only when

the time of solution is sufficiently large, i.e., the initial conditions

on the sdjoint variables are small.
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Figure 5.3 Adjoint-Equation Solution and Corresponding Control.
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I. Reverse-Time Solutions

A systematic search for the optimal switching surfaces was

made on an analog computer by running the system in reverse time 3

where T is the time of solution Tf-_ O

pitch equations and the adjoint equations are

(3-7)

In reverse-time the modified

dr* - +3e cos _, - u5

(3-8)

t /)= + 5e cos _ _ Co., P6

(3-9)

,

A series of runs was made for various values of e , T/_ ,
O

e , and k3 as given in Table i. The time of solution

was restricted to less than twice the orbital period of the satellite.

One orbital period is equivalent to T/_ = 2_.) Also, 7 was taken
O

to be zero so that e represents the location of the satellite in its
O

orbit at the time of the disturbance, @ = 0 and _ corresponding to
O

the perigee and apogee_ respectively. Some representative reverse-time

phase-plane trajectories, that were drawn by an x - y plotter from

the output of the analog computer, are shown in Figures 3.4 - 3.6.*

The scaling for all of the computer solutions is based on the repre-

sentative satellite configuration given in Appendix A.
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TABLE 3.1

VALUES USED FOR REVERSE-TIME OPTIMAL RUNS

e
0

0

3A4

71-

3A2

_I_

_/2

7

5_/2

27

57

R ,_, *

p(Tf)

+(o,i.5)

-+(.5,1)

+(.25,1)

_+(1,1)

0.05

0.075

O. I0

O. 125

o.15

o.175

0.20

The scaling is such that N5 =

k5

0.5

0.67

o.85

1.0

1.0
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2. Characteristics of the Optimal Control

_ne many reverse-ti_ examples that were run on the analog

computer, such as Figures 5.4 through 3.6, showed that the optimally con-

trolled trajectories have the following characteristics: almost all

"control-on" intervals cross the x6-axis ; when on, u3 = - N 3 SGNx 6 ,

except in a few short intervals which occur only with the larger

eccentricities in Table 1 (Figure 3.6); and, almost all "control-off"

intervals cross the Xs-aXis. These are the same general characteristics

exhibited by the optimal controller for the simple pendulum [7]. However,

in contrast to the simple pendulum equation, no simple form for the

switching curves for Equation (3-1) can be recognized. The "control-on"

intervals exhibit no uniformity or symmetry, and odd behavior such as

the "skipped" control-on interval can occur (Figure 3.5).

The behavior of the optimal controller was studied in more

detail by considering the location of the switching points in the phase

plane and cost versus error-magnitude curves for various initial and

total times. Figures 3.7a and 3.7b are plots of optimal cost

versus initial error magnitude R ° , where

R2o= [xs( o)12+[x6( ol]2 ,

for eccentricities of 0.1 and 0.2, respectively.

points are closely clustered about a straight line.

J3

(3-1o)

In Figure 3.7a all

Thus, the initial

- 39 -
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time and phase plane location do not appreciably affect the cost for

a given error magnitude. Also, the symbols indicating the three solution

times show, in most cases, the expected effect: a decrease in fuel con-

sumption for an increase in time for a given initial error. Figure 3.7b

shows that these statements are no longer true when the eccentricity is

increased to 0.2. Now, in many cases the cost is not proportional to

the time of solution for a given error magnitude (this is readily appar-

ent at R ° = 0.3 in Figure 3.7b), so the cost is appreciably affected

by the time of the occurrence and the phase plane location of the initial

error. This behavior is largely due to the uncontrolled motions that

have nearly constant velocity for an extended period of time, as in

Figure 3.2b. Depending on its direction, this type of motion can

greatly help or hinder the controller (see Figure 3.8).

Figure 3.9 shows the control-on intervals in the upper half

of the phase plane for runs with an eccentricity of 0.i. (The intervals

in the lower half are symmetrical with respect to the origin since the

adjoint and system equations are linear and piecewise linear, respectively. )

Since the control is a time-varying function of the state, no simple

switching curve is apparent in this figure. However, many of the switch-

on points lie very nearly on a parabola, particularly in the vicinity

of the origin. The points that do not lie near this parabola are approxi-

mately half on one side of it and half on the other. In a similar plot

for runs with an eccentricity of 0.2 the switch points were much more

scattered except very near the origin where they again were clustered
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along a parabola. Since the last switch point for an optimally controlled

motion always lies on a trajectory that passes through the origin, it is

logical that these points would lie on a curve having approximately the

shape of an arc of a circle or a parabola.

The above considerations make it apparent that it will be con-

s±_u_ more difficult tu realize a near optimal _u,1_- for eccen-

tricities around 0.2 than for smaller eccentricities.

C. Suboptimal Pitch Control

Further study of the adjoint initial conditions and the switching

points for various initial and final times failed to reveal the state and

time dependence of the optimal switching curves. Thus, the characteristics

of the optimal control that were discussed in the preceding section will

now be used as a basis for developing a suboptimal pitch control system.

i. Selection of the System

As discussed in the last section, many of the optimal "switch-

on" points occurred on or near a parabola through the origin of the

phase plane. Also, Figure 3.9 shows that in many cases the length in

time of the control-on intervals is longest while the error magnitude

is large. (The intervals are of constant length in time for the 1/(s2+l)

plant.) Thus, a parabola appears to be a good choice for the swltch-on

portion of the suboptimal switching curve.

The switch-off points are _rach more scattered than the switch-

on points, so a choice for this portion of the switching curve is not so

obvious. Other considerations must be taken into account. One of these
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is that besides being efficient the control system should be as simple

as possible, i.e., easy to realize. Computer realization of the switching

curves is greatly simplified if the curves are symmetric with respect to

the phase plane axes and are constant with time. For this reaso_ and because

it fits the switch-off points about as well as any other simple curve_ a

parabola will also be used for the switch-off portion of the suboptimal

switching curve. Therefore_ the chosen suboptimal pitch control system

has the form

_-N 3 CST x 6 for x_ > b I
u3 = , (3-II)

< 0 for x_ < blx51

where b is a constant whose value is yet to be determined. The phase

plane switching curves for this system are shown in Figure 3.10. The

computer realization of this control system is described in Appendix C.

2. Optimization of the System Parameter

Ten representative optimal solutions for disturbances of various

magnitudes (see Table 2) that occurred at five different locations on the

orbit_ as shown in Figure 3.11_ were selected from the many reverse-time

solutions. These ten solutions were used to determine the best value for

the suboptimal-control-system parameter b An initial choice for b

was made by curve fitting a parabola to Figure 3.9s such that it passed

through the largest concentrations of optimal switching points. The

resulting value for the parameter was 2.0. To determine the merit of

this choice, each of the ten initial conditions of Table 2 was controlled

using the suboptimal control system with various values of b near and

at the initial choice. These values ranged from 0.5 to 2.5 in steps of
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TABLE 3.2

REPRESENTATIVE TEST RUNS e = 0.i and _= 1.6

Run

i

2

3

4

5

6

7

8

9

i0

e
O

0

7[

7[

0

37[/2

3F/2

7T

3_/4

3rr/4

27r

7[

2_

77-

27T

7[

2_-

X50*

1.70

1.45

5.20

-o.o5

1.01

- o.85

0.67

O. 36

1.46

i.ii

X60*

- 0.33

- 2.98

- 0.23

- 4.53

0.73

- 3.6o

1.84

- 2.48

i. 37

- 3.06

(o,1.5)

(o,1.5)

(o,1.5)

(.5,1.o)

(.5,1.o)

(.5,1.o)

(.5,1.o)

(.5,1.o)

(.5,1.o)

(.5,1.o)

The scaling is such that N 3 = 1.0
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0.25. In each case the cost and control-time was compared to the optimal

solution; the results are presented in Figure 3.12.

Figure 3.12 shows that in only one case, case (5), was the

control system quite inefficient; the increase in cost over the optimal

was never less than twenty percent*. In two cases, (cases (3) and (9)),

the system was very efficient_ for some values of b the cost was less

than for the optimal solution. (The time of solution was, however, some-

what longer.) In the remaining test cases reasonably good efficiency can

be obtained by the proper choice of the parameter b . In making this

choice, both cost and time of solution must be considered. Figure 3.12

also shows that in most cases the cost decreases and the time increases

as b is increased. However, for the larger values of b the increase

in time is much more significant than the decrease in cost. The desired

control times were chosen when the reverse-time optimal solutions were

run, and, therefore, the suboptimal solutions should have approximately

the same control times. Taking this into account, the best performance

of the suboptimal control system was obtained when b was equal to 1.75.

This is quite close to the original choice found from Figure 3.9.

3. Comparison to the Optimal Control

With the selected value of b , the average increase in cost

over the optimal for the test runs was only 9.0 percent. Also, the

control times were in most cases approximately equal to those for the

optimal solutions. To further check the performance of the suboptimal

* The large jump in cost in case (5) is due to the increase in control

time. The additional uncontrolled interval occurred at a bad time so

the error grew considerably before the control was again turned on.
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control system it was used to control a large variety of initial

conditions. Figure 3.13 is a plot of cost J versus initial error

magnitude R for these runs. The shaded region is the region which
o

contained practically all such points for the reverse-time optimal runs

(see Figure 3.7). Since most of the suboptimal solutions lie within the

same region as the optimal solutions_ the overall performance of the sub-

optimal control system compared to the optimal control system is very

good.

Direct comparisons of optimally and suboptimally controlled

trajectories with the same initial conditions, as in Figure 3.14 show

that the phase plane locations of the switching points for the two

control systems do not differ a great deal. They also show one reason

for the increase in cost with the suboptimal system. In 70% of the test

cases the error magnitude during control was kept smaller by the sub-

optimal system than by the optimal system, as shown in Figure 3.14

Since this is a desirable characteristic_ the additional fuel consumption

of the suboptimal system is not entirely wasted.

Additional requirements on the controller, such as minimizing

the error during control_ naturally force it to expend more fuel. Thus,

in effect the control system (3-11) is also a near optimal pitch control

system for a performance criterion of the form:

tf

J = t_ (lul+k[Rol)dt (3-12)

o

where k < i _ i.e., the fuel consumption is weighted more heavily than

the error magnitude.
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_. Comparison to Another Suboptimal Control

The selected suboptimal control system (3-11) has the advantage

of being very simple. However, there is another coast-type control system

that is perhaps slightly simpler. The switching lines are straight, i.e.,

instead of squaring x6 _ its absolute value is found. This "sector"

system has the form:*

- N3 SGN x 6 for Ix61 > klx51
u3 = (3-13)

i 0 for Ix61< klxsf

A single value of k was chosen for all initial times and states

since an invariant control system was desired. Using the initial conditions

of the representative reverse-time trajectories of Table 2, the value of

k that gave the best average efficiency for the desired control times

was found to be 2.0. With this value of k the sector system had an aver-

age increase in cost over the optimal of ]2%, only 3% greater than the

parabola system, as shown in Figure 3.15. This figure also shows that

when either system was very efficient, the other was too. However, for

initial conditions that were difficult to control, i.e., for which near

optimal cost could not be obtained by a simple control system, the sector

system performed considerably worse than the parabola system (see Figure

3.15). Thus, the parabola system is more capabie of allowing for the

variations in the pitch behavior. In addition, when the efficiencies

of the two systems were approximately equal, the control-time with the

Fl_gge-Lotz and Craig K25S show that this system is optimal with respect

to a minimum-fuel performance criterion for the 1/(s2+l) plant if the

control time is restricted to a special set and k is a specified function
of the initial error.
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sector system was the same or greater, but never smaller, than the con-

trol-time with the parabola system.

Another reason why the sector system is not as desirable as

the par_bo!8 system for this application is illustrated in the examples

of Figure 3.16. In these examples, as in 80% of the cases that were

compared, the parabolic switching curves resulted in a smaller error

magnitude during control than the sector switching lines. This is due

to the fact that with the parabola system the control is on for longer

intervals when the error is large than when it is small, while for the

sector system the intervals are approximately constant. In the remain-

ing 20_ of the cases the error magnitude during control was approximately

the same.

The decrease in average cos% along with the decrease in error

magnitude during contro_ definitely makes the slight increase in com-

plexity of the parabola system over the sector system worthwhile.

5. Extension of the System

The above development of a suboptimal control system was

limited to values for the inertia parameter k3 and the orbital

eccentricity e of 0.85 and 0.1_ respectively. The chosen system mnst

now be extended for control of satellites of other shapes and satellites

in orbits of other eccentricities.

a. Other Satellite Shapes. The inertia parameter k 3 has a

possible range of minus one to plus one, but the negative values should

be eliminated for stability reasons. As k3 approaches zero, the

effect of the gravity gradient term diminishes and the pitch equation

approaches the form
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= u + f(t) (3-14)

where f(t) is small. For this equation the optimal control is much

different from that for Equation (3-1), as is expected from comparing

_'--" _"^_ --_" _ (seemln±_m-_± _ma_ control for _ = u to that for _+x = u

Craig [7])- Thus, the devised suboptimal control cannot be expected to

work satisfactorily for small k 5 . Analog computer solutions verified

this since the suboptimal cost was as much as 80_ greater than the

optimal cost when k5 was near zero.

The suboptimal control system is also unsatisfactory for k5 = i/3

since for this value of the inertia parameter the Mathieu equation, and

consequently the linearized pitch equation, is unstable. Analog computer

solutions showed that with this value of k5 the system was sometimes

unable to reduce the error to zero; a limit cycle resulted instead.

Therefore, in the following k5 will be limited to the range

0.5 -< k5 -< 1.0 This means that the satellites which are being con-

sidered are those whose roll and pitch moments-of-inertia are nearly

equal and are a fair amount larger than their yaw moment-of-inertia.

For k 5 within this range the behavior of the system does not vary

a great deal. Figure 5.17 shows that near the origin the optimal tra-

jectories are almost identical. (The trajectory that does differ from

the rest is one for which k5 = 1/5 .) Thus, only the larger initial

errors show a significant change in the performance of the suboptimal

control system. Consequently, these are the only initial conditions for

which the best value of the control parameter b might change. For
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these initial conditions, the same procedure as before was used to

determine the best value of b for several values of k5 in the range

0.5 _ k 5 _ 1.O Some individual cases changed appreciably in cost

from that for k3 = 0.85 , but on the average the changes were small.

The best value of b for all the tested values of k5 was found to be

_- . -_ k 3_n_ _ i.e , 1.75 _us, designing for a central value u±

produced a system that is near optimal for a fair range of satellite

inertia properties.

b. Other Orbital Eccentricities. In deriving the linear time-

varying attitude equations the assumption of small eccentricity was made.

The approximations that were used should be reasonably accurate for

eccentricities up to about 0.2. As shown in section III-B, the behavior

of the optimal control for eccentricities this large was sometimes quite

different from the behavior for eccentricities around O.1. Thus, the

suboptimal control system that was developed for eccentricities around

O.1 cannot be expected to work exceptionally well for eccentricities

around 0.2.

Forward-time runs on the analog computer were used to determine

just how well the control system performed for e = 0.2 . It was found

that for most initial conditions, the system performed quite well.

However, there were some initial conditions for which the system appeared

unstable_ i.e._ the error magnitude grew too large for the linearized

equations to be valid (see Figure 3.18). This "unstable" behavior was

found to occur for eccentricities larger than 0.15 and was caused by

the nearly-constant velocity behavior of the pitch equation that was
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previously mentioned. This instability could not be prevented without

a complete change in the form of the switching curves.

For eccentricities less than or equal to O.15,the best values for

the control system parameter b and the average increases in cost over

the optimal with these values were determined using the analog computer.

The results are shown in Figure 5.19. Again, in choosing b the control

time, in addition to the fuel consumption, is taken into account. For

the selected values these times are such that large errors are controlled

in approximately two cycles in the pitch phase plane, which corresponds

to about one orbit of the satellite.

Figure 5.19 shows that the performance of the suboptimal system

improves and the best value of b increases as the eccentricity of the

orbit decreases. For the larger eccentricities the gas jets need to be

on more, i.e., b is smaller, in order to eliminate the error in the

desired amount of time. Thus, the fuel consumption for a given error

increases as the eccentricity increases. However, the rate of increase

for the optimal control is smaller, and consequently the efficiency of

the suboptimal system decreases as the eccentricity increases. The system

has excellent performance for e -< O.1 , reasonably good performance for

0.I < e -< 0.125 , and poor performance for e > 0.125 For the larger

eccentricities ( e > 0.125 ) it is apparent that the parabolic switching

curves are no longer a good approximation to the optimal switching curves.

Therefore, the suboptimal system is recommended only for eccentricities

less than around 0.125.
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6. Discussion of th%System

What has been developed in the above sections is a suboptimal

pitch control system that is very simple, yet is quite efficient. The

s_1 _÷.. of +_ ..... ÷_m a!!ows for easy realization using analog

elements, giving a continuous-feedback system. The performance of the

system is good throughout fairly large ranges of the orbital eccentricity

and the pitch inertia parameter: 0 < e s 0.]25 and 0.5 < k 3 < 1.0

Also, the best value of the suboptimal-control-system parameter b

changes very little with changes in the eccentricity and the inertia

parameter within these ranges.

The fact that the best value of the parameter b changes very

little with changes in the satellite and orbit parameters within the

above ranges has significant practical value. The orbit of a satellite

will change slowly unless adjustments are constantly made, and the

moments-of-inertia of the satellite will change slightly because of fuel

expulsion, extendable booms, etc. Thus, the exact values of the orbit

and satellite parameters are frequently not known. Consequently, a

system that is equally well suited for a range of these parameters is

necessary.

Since the performance is also not greatly affected by small

changes in the parameter b , the system is relatively insensitive to

small amounts of sensor noise. Noisy measured values of the error and

error rate are equivalent to random variations of the switching points

about the nominal parabolic switching curve, i.e., small random variations

in b . This is shown in Figure 3.20 where noise having a maximum
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amplitude of 4!N3 was added to the error rate x6 before it was fed

into the controller. As expected, the noise had little effect when

the values of the state variables were large. When the origin was

approached the _._itching points changed considerably, forcing the con-

troller to take an extra half cycle to eliminate the error. However,

the cost increased only 4.2 percent, which is quite good considering that

the noise level in this example was quite high.

One problem in the control of the pitch attitude, that has

thus far been neglected, is that the motion is forced. The forcing

function was neglected sincej as state before, it is fairly small and

it does not affect the form of the optimal control as a function of time.

In addition, neglecting it facilitated comparisons of the backward optimal

and the forward suboptimal trajectories and costs, since then there was

no difficulty getting all the way back to the origin. Because it is

periodic and since a great many examples were considered, the effects

of the forcing function, if it had been included, would have averaged

out. Thus, the same suboptimal control system with the same efficiencies

would have evolved. Consequently, there is no need to include the for-

cing function when considering acquisition controlj as was done in this

chapter.

However, when considering steady-state control, the forcing

function becomes very important. Because of it, the desired end state

is not an equilibrium state. Thus, the steady-state motion is a limit

cycle about the origin of the error phase-plane. The size of the limit

cycle is a function of the duration and timing of the control pulses
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during each cycle and the magnitude of the forcing function 3 which is

proportional to the eccentricity of the orbit. Obviously, the forcing

function must be included when steady-state control is considered. This

is what is done in Section B of Chapter V.
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IV. YAW- ROLL A_'gITUDE COhS_ROL

Complete three-axis control of the attitude of the satellite must

be provided for the linearized versions of the attitude equations to

be valid. The full non-linear attitude equations show that the motions

about the three axes are coupled. Thus, only if the yaw and roll errors

are held small can the previous results for the linearized pitch equation

be used.

A. Linearized Yaw-Roll Equations

For the linearized equations the pitch motion is decoupled from

the yaw and roll motions but the yaw and roll motions are still coupled.

The linearized yaw-roll equations are (see Equations (2-32) and (2-41))

x'= Al(T)x+ BlU* (4-i)

where

-t
x = [xIx 2x 3x 4]= [eI ele 2 e_]

u't: [u_ u_]

AI(T ) = [aij] , i,j = 1,2,3,4

0 0

i 0!

BI= LO 0

0 1

(4-2)

Under certain reasonable assumptions of eccentricity and satellite inertia

properties these complicated and difficult-to-analyze equations can be

reduced to a more workable form.
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From considerations in the previous chapter on pitch control the

eccentricity of the orbit will be limited to the range 0 _ e _ 0.125 .

The satellite shape has already been assumedto be such that the nominal

moment-of-inertia parameter values are kI = 0.25 , k2 = - 0.91 , and

k3 = 0.85 . For these parameter values and small eccentricities someof

the terms in Equation (4-1) are quite small. This is more readily

apparent if a time scale change is made.*

ent variable T is changed to

A

where O_ = - 4k2 . The matrix AI(T )

The dimensionless independ-

then becomes

(4-3)

0 i 0 0

kI i - kI

y(l+4eC) 0 2e- - --_ S _ (l+2eC)
Cf

0 0 0 i

1 + k2 (l+2eC) -(i+3.25eC) 02e

7 s o_

(4-4)

A

whereC:cos( +0o)ond
on the new form:

°oiS= sin + Also, the control takes

-t

u : [uI u2] (4-5)

where

ui = u*'/C21 , i = 1,2

* The actual purpose of the time scale change is to put the equations

in a form that is better suited to analog computer realization.
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For the nominal values of the moment-of-inertia parameters and an

eccentricity of 0.i, the coefficients of the entries in AI($ ) have

kl/G2 = 0.069 , 2e/2 = 0.055 , (l+k2)/G = O.O47,the following values:

(l-kl)/_ = .393 . Thus, a reasonable approximation to the yaw-rolland

set of equations is formed by neglecting the terms containing the first

three of the above four coefficients. These terms are only about one-

twentieth the magnitude of the dominant terms. The simplified yaw-roll

equations are :

x' : Al(_')x + BlU (4-6)

where

AI(T) =

0 1 0 0

0 0 0
i - kI

---_(l+2eC)

0 0 0 1

0 0 -(i+3.25eC) 0

Thus, the simplified yaw motion is that of a i/s 2 plant with a not-

too-large forcing function due to the roll motion. The simplified roll

motion is not affected by the yaw motion. The roll equation has very

nearly the same form as the linearized, unforced pitch equation. The

only difference is in the magnitude of the coefficient of the cosine

term and that 8 is replaced by _ . These differences are small, so a

roll control system similar to the pitch control system will be considered.

Noting the inertia properties and orientation of the satellite and the

direction of the gravity gradient, the above characteristics of the

small attitude motion are not surprising.
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B. Optimal Yaw-Roll Control

With the change in the time scale the cost functional for the yaw-

roll system of equations becomes

f

Ji,2--j (luII+ lu21)d_

o

(_-8)

Thus_ as shown in Chapter II the optimal control with respect to this

minimum-fuel performance criterion must satisfy the relations

u = N. CST i = 1,2 (4-9)i 1 P2i '

where N i = N_/O-2 and the adjoint vector now satisfies the equation

_t
_' = - Al(_)_ (4-10)

In the adjoint system of equations the coupling is opposite to that

in the system equation_ _). Pl and

P4 ' but P3 and P4 are affected by

linear function of ¢ of the form

P2 are not affected by P3 or

Pl and P2 P2 is a simple

P2= -Pl_ + P2 (4-i1)
o

where Pl and p2 ° are constants. Consequently, the optimal control

for the simplified yaw equation has at most two switchings and is very

similar to that for the i/s 2 plant. The only difference is due to the

roll forcing term in the yaw equation. This does not affect the form

of the control as s function of time but causes a change in the phase-

plane switching points to guarantee that the origin is still reached.
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P4 satisfies a normalized _thieu equation with a forcing term due

to Pl :

=÷ °
Thus_ one expects a similarity of the roll control to the pitch control

with variations that depend on Pl "

1. Reverse-Time Solutions

The system and adjoint equations were simulated on the analog

computer. Optimally controlled trajectories were then determined by

running in reverse-time starting at the desired end-state, as was done for

the pitch equation. By making a large number of runs with a variety of

final adjoint states and orbit locations (initial conditions in reverse-time)

a fair coverage of the possible initial yaw-roll states was made. Figures

4.1 and 4.2 are two representative examples of these many reverse-time

optimal trajectories.

2. Characteristics of the Optimal Controls

Figures 4.1 and 4.2 exhibit the characteristics that are expected

considering the form of the simplified yaw-roll equations. The yaw motion

is approximately parabolic when the yaw control u I is on, and deviates

in the coast intervals from x2 = a constant only because of the coupling

with the roll motion. When the roll error is zero the simplified yaw

motion is exactly that of a i/s 2 plant. Figure 4.3 is a phase-plane

plot of the optimal yaw switching points for a variety of reverse-time runs.
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The switch-on points lie on or near a parabola that is the zero trajectory

when no cross coupling is present. The variations from the zero trajectory

are not large because the cross-coupling term is not large. The switch-

off points are not as uniformly located but are usua1_ roughly on a hori-

zontal line with the corresponding switch-on point. The coast portions

of the trajectories are close to the xl-axis in most cases because the

selected times for solution are fairly long.

The roll phase-plane trajectories appear very much like those of

the pitch motion. The same general characteristics, such as the locations

of the control intervals and the switching points, are apparent. The

main difference between the roll and pitch systems is that the equation

for the roll adjoint, of which the control is a coast function, is non-

homogeneous. The pitch adJoint satisfies the homogeneous form of the

equation with only slightly different coefficients. Removing the forcing

term in the roll adjoint equation, which is equivalent to using zero yaw

control, was found to cause only small shifts in the switching points in

the roll phase-plane_ as shown in Figure 4.4. Thus, the pitch equation

results should be extendable to the roll equation.

C. Suboptimal Yaw-Roll Control

The characteristics of the optimal controls that were discussed in

the preceding section will now be used as a basis for developing a sub-

optimal yaw-roll control system, as was done in the last chapter for the

pitch motion.
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i. Selection of the Systems

a. Yaw Control System. The optimal switching surfaces for the sim-

plified yaw equation with the coupling neglected are known explicitly as

a function of the state (see Fl_gge-Lotz and Craig [25] and Meditch [lO]).

With the coupling included the optimal trajectories have the same general

characteristics -- parabolic trajectories when the control is on, rela-

tively constant x2 when the control is off, at most two switchings --

so a suboptimal control scheme should have similar switching surfaces.

However, the optimal switching surfaces for the simple 1/s 2 plant are

not easy to generate, so an approximation to these curves is selected as

the suboptimal yaw control scheme.

Rather than having a constant solution time for all initial conditions

inside a minimum-time isochrone, as is true for the optimal switching

curves, the yaw system is designed such that the solution time is roughly

proportional to the error magnitude. This is accomplished by having the

coast area in the phase plane an open rather than a closed region. From

considerations of the 1/s 2 optimal control, the on-switching curve is

chosen to be the zero-trajectory parabola for no coupling. This is also

the average zero-trajectory when coupling is present since the coupling

term is approximately periodic. Further justification for the selection

of this switching curve is that it is a good fit to the switching points

shown in Figure h.3.

The off-switching curve is chosen to be a straight line because it

is easy to realize 3 it produces the desired shape of the coast area, and

it is the best fit, for a simple curve, to the off-switch points of
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Figure 4.5. Thus, the selected suboptimal yaw-control system has the

following form:

1 SaN(x21x21+2×1 ) + Sa_(x2+cxl) (4-15)Ul - 2

The phase-plane switching curves given by Equation (4-13) are shown in

Figure 4.5. The computer realization of this control system is shown

in Appendix C.

Based on the observed reverse-time optimal switching-points, the

initial choice for the coefficient c in Equation (4-13) was 0.25. The

merit of this choice was checked by simulating the system on the analog

computer and using it to control various arbitrary initial conditions.

It was found that the performance of the system could be improved,

without increasing the solution time to a level above that for the

optimal, by reducing the magnitude of c Comparisons of the optimal

and suboptimal trajectories showedthat the lowest fuel consumption for

control in the desired time was obtained with c equal to 0.i0.* No

improvementwas obtained by changing the coefficient in the first signum

function of Equation (4-]3).

Except for sometrouble cases that are discussed in the next section,

the average increase in fuel consumption over the optimal for the system

with these parameter values was ii.8_. Values for c greater than 0.i0

reduced the coast time; and consequently, the control time, but they

increased the fuel consumption. Values for c less than 0.i showedthe

reverse effect in many, but not all, cases. The different behavior

The control time for a yaw error of 0.4 radians and no roll error was
_/_-- _.
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occurred when the coupling with the roll system had an adverse influence

during the yaw coast-phase. Then, an additional half cycle of phase-

plane motion was necessary to zero the error. This behavior also

occurred for c = 0.i , as shown in Figure 4.6.

b. Roll Control System. As discussed above, the system and optimal-

control equations for the simplified roll equation are essentially the

same as those for the pitch equation. Also, comparisons of the reverse-

time optimal trajectories showed that the switching characteristics of

the two systems were indeed very similar. Thus, the suboptimal roll

control system is chosen to be of the same form as the suboptimal pitch

control, i.e.:

_- N2 SGN x4 for x_ > alx 51

u2 =

0 for <alx31

The best choice for the parameter a can be determined from the

results of the last chapter. The difference between the modified pitch

equation and the simplified roll equation is in the coefficient of the

gravity-gradient terms. For the pitch equation the coefficient is

1 +Se cos (nt+0o) while for the roll equation it is 1 +5.25e cos (nt+0o) .

These can be made equivalent by defining

= 1.08e

and substituting this into the roll equation.

(4-15)

Thus, the best value of

the parameter a for various values of e is found by making a small-

scale change in the eccentricity axis of Figure 5.19. Consequently, for

an eccentricity of 0.1 the roll system requires a slightly smaller para-

meter value (1.70) than the pitch system; and the average cost increase
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over the optimal is slightly greater (_ ll%). Also, the maximum eccen-

tricity for which the system is acceptable is reduced to about 0.115.

The above values that were obtained from Figure 5.19 were checked

against the results obtained from analog-computer runs. The computer

results showed that the best parameter value was indeed 1.70 and that

the average increase in fuel consumption over the optimal was 11.2%.

2. Discussion of the System

The appearance of some suboptimally-controlled trajectories is

shown in Figures 4.6, 4.7, and 4.8, which are solutions obtained from

the analog-computer simulation of the yaw-roll system. For Figure 4.8

the system was run optimally in reverse-time to the initial condition

and then suboptimally in forward-time. Thus, a direct comparison of the

cost and solution-time was possible. For this particular example the

solution-times were about equal, as in almost all the test cases 3 and

the suboptimal system had an increase in fuel consumption of 7.1%. The

average increase for the test runs was ll._. Also, in many cases_

although not in this example_ the roll controller exhibited the other

desirable characteristics that the pitch controller showed, such as a

smaller error magnitude during control than the optimal controller. Thus,

even though the suboptimal yaw-roll control system is quite simple_ its

performance is near optimal.

The performance of the system is acceptable for eccentricities

only slightly larger than O.l_ as mentioned above. However_ for eccen-

tricities less than 0.1 the efficiency of the suboptimal system increases

as the eccentricity decreases. For the roll system this is readily
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apparent from Figure 5.19 with the scale change of Equation (4-15). The

only change in the yaw equation is that the variations in the forcing

term decrease, so control is more easily accomplished. Thus, the yaw-

roll control system is acceptable for eccentricities in the range

0 _ e _ O.115 .

The satellite shapes for which the suboptimal system is

acceptable must have inertia parameters such that the terms which were

neglected to form Equation (4-6) remain small. Thus, the satellite must

retain its basic inertia properties. Consideration of the terms that

were neglected, shows that increasing the absolute value of k2 and

decreasing the absolute value of kI improves the approximations. In

the other direction the dropped terms will be limited to a maximum value

of one-tenth of the dominant terms. This restricts _ to a maximum

value of - 0.82 and kI to a maximum value of 0.27. These variations

in k2 do not affect the performance of the roll control system, as is

discussed in Section C.Sa of Chapter III. The variations in kI only

cause small variations in the magnitude of the coupling term. This does

not affect the performance of the yaw system to any significant degree.

Thus, the suboptimal yaw-roll system is near optimal for satellites with

inertia parameters in the ranges 0 _ kI _ 0.27 and - 1.0 _ k2 _ - 0.82 .

A certain set of initial conditions was found to give the yaw-

roll control system the appearance of being unstable. This behavior

occurred when the initial roll error was relatively large, the initial

yaw error-rate was opposite in sign to the roll error, and the initial

time was such that the cosine term was positive and near maximum. When

these conditions occurred the roll forcing term in the yaw equation was
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larger in magnitude and opposite in sign to the yaw control. Thus, the

apparent yaw control was of the wrong sign, which had the effect of

driving the yaw state awayfrom the origin. This behavior is shownin

Figure 4.9. However, considering the unsimplified yaw equation it is

apparent that under these conditions one of the terms that was dropped

is growing large with a sense opposite to that of the roll forcing term.

This could sufficiently reduce the effect of the roll term such that the

apparent control remains the correct sign. As will be shown in the

following chapter, this is indeed what occurs.

In this chapter a simple feedback control system for yaw-roll

attitude control has been developed that is near optimal with respect to

fuel consumption. It works very well for eccentricities around 0.I or

less and a small but realistic range of inertia properties. In the

following chapter the system behavior will be checked using more accurate

attitude equations.
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V. THREE-AXIS ATTITUDE CONTROL USING

THE DEVELOPED SUBOPTIMAL SYSTEMS

To develop the near-optimal attitude control systems in the two

previous chapters, the equations of the attitude motion of the satellite

were linearized. For the linearized equations to be reasonable approxi-

mations, the motions that were discussed and controlled had to be limited

to fairly small errors. In reality, there is no reason why the attitude

errors would be limited to this range. Thus, to guarantee that the

developed system is a workable design, its ability to control larger

errors must be shown. Consequently, the nonlinear attitude and orbital

equations, Equations (2-6), (2-7), (2-8), (2-11) and (2-12), must be

used to describe the motion. In addition, the use of the nonlinear

attitude equations will allow further investigation of the unstable

behavior that was discussed in Chapter IV.

A. Suboptimal Acquisition Control

i. Digital Computer Simulation

The full nonlinear attitude equations were integrated on the

Burroughs B5500 in Chapter II to investigate the uncontrolled motion.

To study the controlled motion the control systems that were developed

in Chapters III and IV were added to the computer program, which was not

difficult because of the simplicity of the control systems. The com-

puter program is outlined in Appendix C. Integrations were then per-

formed for a variety of initial conditions. The Kutta-Merson integrating
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procedure that was mentioned in Chapter II was used, and the results

were plotted using a Calcomp plotter.

2. Examples of Controlled Motion

One set of initial conditions that was used was the one which

produced the unstable motion in Chapter IV, i.e., negative velocity

error in yaw, positive position error in ro!]_ and sn arb!trary error

in pitch. The yaw motion for this example is shown in Figure 5.1.

Initially the error grows as it did when the simplified linear equations

were used. However, as was predicted in Chapter IV, terms that were

neglected eventually dominate the trouble causing terms. Thus_ while

the error magnitude does grow larger than its initial value, the motion

is stable.

The results of chapters III and IV were obtained by using

linearized and simplified attitude equations (Equations (3-8) and (4-6)).

To check these results, several examples were run on the digital computer

starting at initial conditions that were used in the previous chapters.

Figure 5.2 shows the trajectories that were obtained by integrating the

complete attitude and orbital equations with the initial conditions of

Figures 5.14a and 4. 7 . The yaw and roll trajectories of Figure 5.2 are

identical to those of Figure 4.7; the differences in appearance are due

to changes in time and axes scaling. However, the two pitch trajectories

(that in Figure 5.2 and the suboptimal portion of Figure 3.14a) are not

identical. Up to point P in Figure 5.2, the differences are minor.

They are due to the absence of the forcing function from the equations

that were used to obtain Figure 3.14a. Beyond point P the forcing

function dominates the motion, so the two trajectories are quite different.

- 95 -



I

i

Figure 5.1 Yaw Motion_ Unstable Trajectory of Chapter IV.
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Thus, except for the presence of the steady-state pitch motion,

the simplified linear equations, (5-8) and (_-6), gave quite accurate

results over the range of errors for which they were used. In addition,

the similarity of the two sets of results showed that the approximations

which were made in Chapter II (expansion in terms of eccentricity and

retention of only first-degree terms) gave accurate results over the

range of eccentricity that was considered.

Figure 5.3 is a representative example of the runs that were

made with large initial attitude errors. The errors are definitely

outside the region where linearized equations are an acceptable

approximation. The appearance of the phase-plane trajectories is quite

different than that for the smaller errors in two of the phase-planes.

However, no particular difficulty is encountered in eliminating the

errors.* The fuel consumption for this particular example was an increase

over that for the smaller errors in proportion to the increase in error.

Thus_ even though the appearance of the trajectories is quite different,

there is good reason to believe that the efficiency of the suboptimal

control system is about the same for this large error as for the smaller

ones. In general, the fuel consumption for a given error magnitude varied

more for the large errors than for the smaller ones. However, this is

not surprising if one considers the shape of the cost versus error-

magnitude plots, such as Figure 3.7a. The range of the cost steadily

increases as the error magnitude increases.

* No steady-state pitch error is present because the auxiliary pitch

control system that is described in the next section was included when

this example was run.
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Controlled Motion,, Initial Conditions of

Figures _.7 and 5.1ka.
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From the above considerations it appears that the simple,

efficient control system, that was developed in the previous two chapters,

also works well for the acquisition control of large errors.

B. Steady-State Error Control

Acquisition is only one phase of the control problem. Once the

desired attitude is attained, it must be held to within a small allowable

error. For an earth-pointing satellite in an elliptic orbit, the desired

attitude is not an equilibrium state because of the forcing function in

the pitch equation. As shown in Chapter II the amplitude of the forced,

uncontrolled motion can be as much as 12 degrees when the orbital

eccentricity is 0.i.

i. Steady-State Yaw-Roll Control

Since the yaw and roll motions are not forced, their steady-

state control is not as difficult as for the pitch motion. A simple yet

effective solution is to leave small circular regions, about the origins

of the yaw and roll phase plane_ uncontrolled. The chosen satellite

shapes are relatively stable with regard to the gravity torques. Thus,

the attitude motion will remain inside the uncontrolled regions with

little or no control effort, if there are no other outside disturbances.

For a test case the region was made 0.0063 radians in diameter,

i.e., an allowable error of 10.8 minutes of arc. At 200 miles this amounts

to a pointing error of 0.64 miles. Very little control effort was necessary

to keep the roll error within this region. This is as expected since the

motion is nearly that of a i/(s2+l) plant, i.e., circular phase-plane

trajectories. The yaw motion, similar to that of a i/s 2 plant, is not
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as well behaved. Consequently, it required more steady-state control

effort. However, the necessary control pulses usually occurred no more

than twice per orbit and were very short in duration. Figure 5.4 shows

the yaw and roll steady-state motions for one example. The control

pulses are apparent.

The relative fuel consumption for acquisition and steady-state

control is apparent in Figure 5.5. This particular fuel-consumption

curve is for an example which had initial errors of @_ = 0.57 rads ,

@2 = 0.76 rads _ and a small pitch error. The steady-state portion

includes only the fuel consumption for yaw and roll control. No steady-

state pitch control was employed. The figure shows that the fuel con-

sumption for the yaw-roll steady-state control is very small, and quite

satisfactory. Of course, the fuel consumption increases as the magnitude

of the allowable steady-state error decreases. However, the error bound

in the above example is probably small enough for many actual mission

requirements.

2. Steady-State Pitch Control

Without any control the steady-state pitch motion is oscilla-

tory with an unacceptable amplitude of up to 12 degrees. The pitch

system that was developed in Chapter III will keep the error smaller

( _ 7" ) but at a high level of fuel consumption, as shown in Figure 5.6.

Thus, an alternative method is necessary.

The forcing function in the linearized pitch equation is

periodic. Thus_ a momentum storage device, such as a reaction wheel,

is a logical way to obtain the necessary control torques. Consequently,
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Figure 5-5 Yaw-Roll Fuel ConsumptionCurve,

Acquisition and Steady-State
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Figure 5.6
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a small reaction wheel* was added to the pitch control system for steady-

state control. The gas jets are used to control the error when the

error is relatively large. When the error is reduced to a pre-selected

magnitude, the control is switched from the gas jets to the reaction

wheel. When a large error occurs the gas jets are again used. Appendix

D describes the changes in the attitude equations due to the presence of

the reaction wheel.

The complete system was integrated on the digital computer

using the full nonlinear equations so that all coupling effects were

included. The phase-plane trajectories for some arbitrary initial

errors, that are outside the steady-state regions, are shown in

Figure 5-7- Figure 5.8 shows the fuel consumption and the wheel speeds

that were necessary to eliminate these errors. It is apparent that

once the steady-state mode of operation begins, the fuel consumption is

very small. Also, after the initial acceleration the wheel motion is

approximately sinusoidal.

This combination reaction-wheel, gas-jet control system works

well for most types of attitude errors. However, one problem remains.

When a large error occurs and the gas jets take over, the reaction wheel

continues to run at its angular velocity at the time of the disturbance.

If the wheel speed is large, the coupling torques can cause the yaw and

roll motions to become unstable (see Kane and Mingori [2_]). One way to

eliminate this instability is to brake the reaction wheel, when the large

error occurs, until its speed is below a pre-selected threshold. The

* The moment of inertia J of the wheel is lo-Sx 13 •

- lO7 -



Figure 5.7 Controlled Motion with Pitch Reaction

Wheel_ 0 = rr/2 .
0
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pitch gas jets are used to compensate for the momentum transfer caused

by the braking. The braking time is relatively short, so while the errors

will grow due to the coupling torques caused by the spinning wheel, they

will not become exceedingly large or unbounded. The additional fuel con-

sumption will sometimes be quite large because of the braking and the

growth in the errors. However, the portion used for braking is not

wasted since this is necessary whenever the wheel saturates.

Figure 5-9 shows the phase-plane trajectories for the initial

errors of Figure 5-7, but with an initial wheel angular velocity. The

initial wheel speed is near the maximum that occurs in normal operation,

such as in Figure 5.8. Figure 5.10 shows the fuel consumption and wheel

speeds that occurred while controllir_ these errors. Due to the spinning

wheel the fuel consumption is 21.9% greater than in Figure 5.8_ but the

control times are about the same. About 60% of the additional fuel was

used to slow the reaction wheel, and, consequently, was not wasted. Thus,

the increase in the fuel consumption due to the wheel motion was small.

Since the wheel speed at the time of the disturbance will usually not be

as large as for this example, the additional fuel consumption will often

be even less. However, it is possible for the coupling torques to have

a more adverse effect on the yaw and roll motions. Such a case occurred

when the direction of the wheel velocity for the example of Figure 5.9

was reversed. In this case the spinning wheel caused the roll error to

grow considerably before it was reduced. Consequently, the control time

was increased 51% and the fuel consumption was increased 102%, not

including that used to slow the wheel. However, a case such as this

when all conditions are at their worst, is very unlikely. In most cases
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the additional fuel consumption will not be large. Thus, while this

steady-state system is definitiely not optimal, it is satisfactory.

C. Discussion of the System

In this chapter the suboptimal control systems, that were developed

in the previous two chapters using linearized attitude equations, were

checked using the more accurate nonlinear attitude equations. After

modifications and additions to the control system to improve the steady-

state performance, it was found to work quite well in most cases. The

acquisition phase of control is near optimal for most small errors and

many large errors when the residual wheel speed is small. The steady-

state phase uses only a small amount of fuel and the power required to

drive a small reaction wheel. Much of this power can be regained since

the steady-state torque requirements are periodic. A block diagram of

the complete attitude control system is shown in Figure 5.11.
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Figure 5.11 Block Diagram, Complete Attitude Control System.
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VI. CONCLUSIONS

The problem considered in this paper is the attitude control of a

satellite in an elliptic orbit. The satellite configuration is restricted

to a limited range of inertia properties. Cold-gas jets that are bounded

in thrust-level are used to supply the control torques. The criterion

upon which the performance of the system is based is minimum fuel-

consumption for reaching the desi_'ed attitude in a given time.

In Chapters III and IV a near-optimal continuous-feedback acquisi-

tion control system was developed using a combination of widely appli-

cable and often simple procedures. First, Pontryagin's Maximum Principle

was applied to determine conditions that the optimal control must satisfy.

The system was then integrated in reverse-time starting at the desired

final state and employing control as dictated by the Maximum Principle.

This procedure is applicable to any system which does not possess inherent

chatter_ as discussed in Fuller [25].

For systems in which the optimal control function is discontinuous_

e.g._ minimum-time and minimum fuel-consumption, the phase-plane switch-

ing locations are readily apparent in the reverse-time trajectories.

Curve fitting to the switching points for a large number of reverse-

time trajectories was found to provide near-optimal switching curves.

This procedure can be applied to any continuous-time system for which

the reverse-time trajectories can be obtained. Since a simple near-

optimal switching curve is usually desired_ the procedure works best
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for simple_ linear_ time-invariant systems. However, in this paper it

was shown to work well also for a particular high-order, linear, time-

varying system.

In Chapter V the control system was tested using the nonlinear

attitude equations_ which give a more accurate description of the actual

attitude motion. In the acquisition phase of control the system per-

formed very well_ even for quite large errors. Several small modifi-

cations were made to the system to improve the steady-state performance.

These included the addition of a small reaction wheel for steady-state

pitch control. The resulting system was capable of limiting the steady-

state errors to small magnitudes without large fuel or power requirements.

While the steady-state performance of the final system appeared

quite good in most cases_ it cannot be claimed that it is optimal or

near optimal. Thus_ further research related to this paper should be

directed toward optimizing of the steady-state attitude control. Careful

consideration should be given to selecting a performance criterion that

weighs both error magnitude and control effort.
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APPENDIX A

SATELLITE CONFIGURATION AND TORQUE LEVELS

The following data describe a fairly realistic satellite and

mission. It serves to give physical meaning to the dimensionless

parameters, errors, and torques that are used throughout the text.

The satellite is assumed to be in 8 slightly elliptic_ near-earth

orbit. The mission requires the satellite to be earth pointing, to

within a small error_ to facilitate information transfer. The orbit

hes an eccentricity of 0.i and a perigee that is 200 miles ebove the

earth's surface. _nus, the apogee is ii50 miles _bove the earth's

surface and the smte!!ite has an orbital period P of 1.74 hours. Its

averege orbital frequency_ n _ is 9-95 × 10-4 rads/sec.

The shape of the satellite is that of an elliptic cylinder with

the following moment-of-inertia ratios: Ii/I S = .12 and 12/13 = .97

To obtain these ratios the satellite is assumed to have moments-of-

inertia of the following magnitudes:

II = 12 slug-ft 2

12 = 97 slug-ft 2 (A-l)

15 : I00 slug-ft 2

With these moments-of-inertia and a vehicle weight of 500 ibs the

satellite has an approximate radius of 1.2_ ft. and a length of 4.26 ft.

This requires a specific weight of 24.2 ibs/ft 5 _ which is probably
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somewhatlight. However_the actual satellite will have a smaller,

denser instrument package with various protuding arms which provide the

desired moments-of-inertia.

In deriving the equations of the attitude motion of the satellite,

the gravity-gradient torque was included. For the terms due to this

torque to be significant in the control problem, it is necessary that

the control torques be very small, i.e., on the order of the gravity

torque. Thus, it is assumedthat the attitude control jets produce a

reaction force of 10-5 ibs. This is possibly an order of magnitude

smaller than present off-the-shelf items, but it is not unreasonable

for the near future.* The gas jets are assumedto be on 3.5 ft moment-
-5

arms so that the magnitude of the control torques is 3.5 × i0 ft-lbs.

For the above control-torque magnitude and satellite shape, the

dimensionless control bounds of Chapters III and IV have the following

magnitudes:

5.5 × i0-5
N3 = 2 = 0.14 radians

3(12-11)n

(A-2)

5.5 x io-5
NI = N2 = 2 = 0.i0 radians

4(I3-Ii)n

One unit on the angular velocity axes of the figures in Chapters III

and IV represents O.14#n and 0.iOn radians per seeond_ respectively.

Thus, the attitude angular velocities are on the order of the orbital

angular velocity, i.e., i0 -S rmds/see.

* New developments_ such as plasma jets, will certainly be capable

of these low torque levels.
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A representative value for the exhaust velocity of attitude control

jets is 1500 ft/sec., i.e., a specific impulse Isp of 1500/g = 46.5 sec.

Thusj the fuel weight-flow for the above jets is

= Force/Isp = 2.15 X 10-7 ibs/sec. (A-5)

For this weight flow one unit on the fuel consumption curves in Chapter

III represents

N5 × _/_n = 1.88 x 10-5 ibs. of fuel (A-4)

and in Chapter IV represents

NI × @/ore: 1.15 × 10-5 ibs. of fuel (A-5)

The scaling for the fuel consumption curves of Chapter V is Nlx¢/n or

2.15 x10 -4 ibs of fuel per unit. Based on these values, the yearly

fuel-consumption for the attitude control system will be less than i0 Ibs.

The pitch reaction wheel has a maximumtorque level equal to that

of the gas jets. Thus, its peak acceleration is 5.5 xlO -2 rads/sec 2

It can accelerate at this level for a maximumof about one-half orbit

and in doing so will reach an angular speed of ii0 rads/sec or about

1050 revolutions per minute. The maximumwheel speed for representative

reaction wheels is 1800 rpm. The scaling for the plots of reaction wheel

speed in Chapter V is such that one unit represents I00 rads/sec.
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APPENDIXB

LIST OFSYMBOLS

Symbol

al( )

iI

a

a.

1

a° °

ij

B

B I

BI_B2_B 5

1

Cl_C2_C 3

1

C°

1

CST

e.
1

Definition

matrix of coefficients of the linearized attitude equations

first four rows and columns of A(T)

simplified and normalized AI(T )

i) semi-major-axis of an ellipse; 2)roll-control-system

parameter (see Eq.(4-14))

measure numbers of 81 in the n. directions1

elements of the matrix A(T)

control coefficient matrix

first four rows and two columns of B

right-handed set of mutually-perpendicular coordinate axes

unit vector directed along the B.-axis
i

pitch-control-system parameter (see Eq. (3-11))

cosine of ($1_+eo)

right-handed set of mutually-perpendicular coordinate axes

unit vector directed along the C.-axis
1

yaw-control-system parameter (see Eq.(4-15))

cosine of 8.
i

coast function

eccentricity of the orbit

unit vector directed along the i-axis

vector function of x and u , n-dimensional
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Symbol

f.
1

G

g

Hn,Hn+ 1

h

Isp

I

kl,k2,k 3

M

M.

1

N*.
1

N°

1

nl,n2,n 3

Definition

components of

universal gravitational constant

acceleration of gravity

vector forcing-function

Hamiltonian function

H for n and n +I dimensional systems

angular momentum of the reaction wheel relative to the

center of mass of the satellite

constant proportional to the angular momentum of the

satellite considered as a particle rotating about the earth

specific impulse of the gas jets

principal moment-of-inertia of the reaction wheel

about a radial axis

principal moments-of-inertia of the satellite

i) cost functional; 2) principal moment-of-inertia

of the reaction wheel about the spin axis

cost functional for the yaw, roll_ and pitch axes

I) sector-control system parameter (see Eq.(3-13));

2) cost-functional parameter (see Eq.(3-12))

moment-of-inertia parameters, ki = (Ik - Ij)/Ii

integrand of the cost functional

mass of the earth

external moment on the satellite, excluding the control

components of M in the

boundon fu I

bound on luil

unit vectors directed along the

n. directions
1

x, y , and z-axes
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Symbol

n

P

P

5

Pi

R

R
0

RI_R 2 _R 3

r

r

S

s

S°

1

SGN

T
op

T,¥,¢

t

t-_

u

U.

1

1_-It-

u _.
1

_r

x,y,z

Definition

average orbital angular velocity of the satellite

orbital period of the satellite (see Chap. V and App. A)

point in the phase-plane

adjoint vector_ n-dimensional

i) components of p ; 2) initial point in the phase-planes

local-vertical reference frame

initial pitch-error magnitude

torques about the x_y,z axes on the satellite
due to the reaction wheel

radius vector from the center-of-mass of the earth to

the center-of-mass of the satellite

length of r

sine of ($/G+8)
O

Laplace transform variable

sine of 8.
1

s ignum function

solution time for the optimal case

solution times in terms of T_ _ and T

time

reverse -time

control vector_ r-dimensional

i) components of u ; 2) normalized attitude controls

attitude-control vector

components of u*

weight-flow of gas from the reaction jets

body-fixed coordinate axes
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Symbol

x

X.
1

Y

1_2_5

E

0

0
0

el,o2,e s

1,0.
1

W

!

t

[]

Definition

state-variable vector 3 n-dimensional

components of x

dummy variable

coordinate-axes fixed in R

normslizin_ Darameter, 2 = _ 4k_

normalizing parameter, 62 = 3k 3

Mathieu-equation parameters

adjusted eccentricity for use of pitch results for

roll system (see Eq. (4-15))

angular position of the satellite in orbit

e at t= 0

nonclassical Euler angles

gravitational constant of the earth

dimensionless independent variables, T = nt

T = _nt

reverse dimensionless independent variable

angular velocity of the satellite in an inertial frame

components of _ in the ni directions

angular velocity of the reaction wheel

in an inertial frame

angular speed of the wheel relative to the satellite

d/dt , differentiation with respect to time

d/dT , d/d_ , or d/d'9

matrix transpose

vector

matrix or vector
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Symbol

II

o

f

absolute value

initial

final

Definition
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APPENDIX C: ANALOG AND DIGITAL COMPUTER PROGRAMS

ADJOINT SYSTEM

5OPTIMAL
CONTROL COST FUNCTIONAL

'_ABS_

+

- MULTI+-C6S_-COSf _-SIN-_;+ ! '"-4 _j,cJ
cos,NE GENERATOR ,__ D TIME

@ u3 [_ -x_ " x6
SYSTEM EQUATIONS

xs
_-Ixsl _ blx_l-x6 _>_,.._

X6 (--_+X_ X6

Xs PITCH CONTROL

-N 3 +_ u3

Figure C.l Analog Computer Program_ Pitch System.
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D'MULT I

u2 SYSTEM EQUATIONS

.... FORWARD TI ME

X
I

P'_.

, ,. X 2
I,s"

X4

X3 o,x3,-,,C%
X -x2-cx I

x__ ...._ ROLL CONTROL
YAW CONTROL r'

Figure C.2 Analog Computer Program, Yaw-Roll System.
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KUTI&-MER£JN INTEGRATING PROCEDURE

P_UCEDURE KUTIAHERSON(NpX,H,Y)FsEPS,ERROR)IVALUE N,H,EPS_I_TEGER N;REAL

XpH,EPS_REAL ARRAY Y[OJ_PRJCE_U_E F_LABEL ERROR_BEGIN O_N REAL HC,FINAL,

H2,_3,H6,_pERRpTESI,T;J_ INTEGER I_D_N BOOLEAN DBLJLA_EL LpKM,RETURN)O
_ REAL A_RAY YIpY2,FO,FI,F2[_:30])DEFINE FORI=FDR I*ISTEP %UNTIL N OO_p

CO_STANTS=H_*H/2.0;H3_H/3.0_H6_H/6oO_HO÷q/B.O#;IF N=OTHEN BEGIN HC*H_Gi}

TU RETURN E_D_IF H=OIHE_ GJ Ti) RETURN_FI_AL*X+H_IF HC=OTHE_ HC*H_IF EPS_

OANi) ABS(H)>ABS{HC)THEW IF SI{;N(H)#SIGN(HC)THEN H_HC_-HC ELSE H*HC_T*X+H

)X*FINALICUNSTANTS_L:FO_ T_T STEP H UNTIL FINAL DD 8EGI_ K_:F(T-H_Y,FO)_

FURl YIIIJ_FO[I]_H3+Y[IJ_F(T-2xH3,YI_FI);FORI YI[I]_(FO[I]÷Ft[I])xH6+Y[I
];F(T-2wH3_TI,FI);F_I II[I]_(FI[I]X3.0+FO[I])xHB÷Y[I];F(T-H2,YI,F2);F_]R

I YI[I]*(F2[I]x_.O'FI[IJx3.0_FO[I])xH2+Y[I];F(T,Y1,FI);FOR[ Y2[I]&(F2[I]

(YI[I]-Y2[IJ)xO.2_TEST_ABS(YIrII)xEPS_IF ERR>TEST THEN BEGIN H.H2_T,T-_P

;IF T+H=T IHEN BEGIN X÷I_GJ TU ERRDR END)CD_STANTS)GO TO KH_ENO;IF 6a,_)x
E_R>TEST I_EN DBL*FALSE_ENO_IF OBL THEN BEGIN H*2wH;CONSTA._IS ENO Df}UBLE

H_END_FDR_ Y[II_Y2[I]_ KUTTA MERSON LD_P_IF EPS=OTHEN GD TO RETURN)H

C_H_H_FINAL-(I-H)_IF Ad_(H)>A_S(FINAL)WI._55191522Ba-IITHE_ BEGIN T*FI_A

L_EPS*O;CU_TANTS_GJ Td L END;RETURN:END <UTTA MERSON_

E._UATI)JNS BF ATTITdOE _IDTION

FEIJ ÷ Y[2};

F[2J + -2xE x SIll x (I+ExCOSI)*3)

F[WJ + (-Y[6] x CY[_]'Y[q]xSINS"Y[2lxCDSlxCOSS)

-Y[2]xSIw3 x CYIq)x_I_5÷Y[8]) ÷ F(?] x C053

_1_5 - (_1+K2} x 3XCl+ExC]SI)*_ x COS5 x
SI_5xSINTwCO_/ - R _ (PxKIxCUST - OWK2w

biN;) - O.bxYtIOJx(JIxOxC3ST + J2wP_SINI)
- GIx(-K2)x_.OxuI) xSEC_

F[_J e Y[6]_

FEb) ÷ Y[a]xYLBJxCDbb " Y[2]wCOS3 x (Y[8]+Y[8]x
_IN5) - F[_]_I_ - 3x(I+ExCUSI),3 x CnS5

X_l_5 x (KlX51_(*2 K_wC!IST*2) - R x (PxK1
X_INT + _x_2xCUSf) + 3,SxY[IO]x(JIxPxCOST
+ J2xQwSINT) + G_x(-k2)xQ,OxU2)

F[TJ _ Y[8];
F[_] • Y[a]xCUS) x CY[Z]xsIN_ - Y[O]) - SIN5 x

(F[4] " Y[bJxY[2JxCdS3) " F(2]xCfIS3xCOS5 - K3 x

C3x(I+ExC_IS|}*3 x CdS5*2 x SINTwCOST+PwO)

÷b3x1.Ax3.0x_x(U3 + tOwExRW3))

F[gJ • GIxA_S(Ut} + G2_A_S(U2) + G3xABS(II3)xt._;

F[IOJ * -_3x_3x3,0xl,qXl3xExRW3_

ALTITUDE CJNI_(EIL SYaTE_

Ut _ IF (Y[3],2 + YL_]*2) < C13 THEN 0 ELSE

O.)x[ SIGN(Y[Q]wAdS(Y[W]) + ClxY[3]) + SIGN(Y[_] + C12xY[3]) ))

U2 ÷ IF CY[5J*2 + YL61*2) < C23 THEN 0 ELSE

IF CY[6],2 " C2xAdS(Y[)])) < 0 THEN 0 ELSE -SIGN(Y[6])_

ER_d_SQ * (Y[_]*Z + Y[_]*2 + Y[b]*2 + Y[6]-2 + Y[/]*2 + Y[BJ*2);

U3 * IF ERRORSJ < CJq THE_ O ELSE IF ABS(Y[IO]) • C36 THEN

"Sl-.w(1[IO]) ELSE IF (Y[_]*2 - C3wARS(Y[T])) < 0 THEiW 0

ELSE -SIG_[Y[b])i

R_3 * IF ERRORSQ < C3_ TH_N -SIGN(Y[R] + C35xY[T]) ELSE

IF AoSCY[IO]) • _36 THLN 0 ELSE -U3)

Figure 0.5 Digital Computer Program_ Complete System.
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APPENDIX D: ATTITUDE EQUATIONS WITH A PITCH REACTION-WHEEL*

With the addition of a reaction wheel, the satellite becomes two

rigid bodies. Thus, to derive the attitude equations it is necessary

to apply the angular momentum principle to each body and to include

the interaction torques between them. In doing this it will be assumed

that the reaction wheel is a perfect disc whose axis of rotation, the

principal axis with the largest moment-of-inertia, is perfectly aligned

with the pitch axis of the satellite.

The angular momentum principle is first applied to the satellite

body. The result is Euler's equations with exactly the same form as in

Chapter II, except that now the external moment about each axis is made

up of the gravity gradient torque M. plus the interaction torque of
l

the reaction wheel on the satellite R. , i = 1,2,3
1

To determine the interaction torques_ the angular momentum

principle is applied to the reaction wheel. The angular velocity of

the wheel in an inertial reference frame is

where _j is the angular speed of the wheel relative to the satellite,

and _ and n3 are defined in Chapter II. The angular momentum of

the wheel with respect to its center of mass_ which is assumed to

coincide with the center of mass of the sateilite, is

9@

See Kane and Mingori [24].
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_ --I(_lnl+_2_ 2) + J(_3+_j)_3 (D-2)

where I = J/2 t When Equations (D-l) and (D-2) are substituted into

the angular momentum principle_ the following form of Euler's equations

results:

I_1 + _2(_3_j)(J-1)--5_ - R1

I_2 + _l(_3_j)(J-I)= %_ - R2 (D-3)

where M. _ i = I_2_3 _ are the components of the gravity gradient

torque on the wheel.

The Euler's equations for the wheel and the satellite are combined

to eliminate the interaction torques R i Beca_se of the symmetry of

the wheel and the way in which it is mounted in the satellite_ the

gravity gradient torque is unchanged by the motion of the wheel with

respect to the satellite. Thus_ in the resulting set of equations the

gravity gradient torques M. are those on the combined body and wheel.
1

The resulting equations are

J

Ii_1 + _2_3(13-12)+ _2_jy = Ml

J
12_2+ _l_3(ll-Is) - _l_j7 = _2 (D-4)

IS_ S + J&j + _i_2(I2-Ii ) = M S

where the moments of inertia I. are those of the combined body and
1

wheel.

* The reaction wheel is assumed to be a disc.
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By writing the componentsof the angular velocity _ and the

gravity gradient torque M in terms of the nonclassical Euler angles

e. and solving for the angular scceierations e. _ the following set
i i

of equations is obtained from Equations (D-4):

_i = (the right-hand side of Equation (2-6))

i J #_2 c°s e3 _i sin e3_

+ cos @2 _J _ \ _i + 12 7
(D-5)

_2 = (the right-hand side of Equation (2-7))

j f_l c°s e 5 _2 sin e3_

J
(D-6)

e5 = (the right-hand side of Equation (2-$))

J &j
15

(D-7)

Equations (D-5), (D-6), and (D-7) are the modified attitude equations

that are used in Chapter V.
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